Maternal Nutrition & Supplementation - Effects on Pregnancy Outcome

Original Committee:
Gideon Koren, MD (Motherisk), Chair
Jon Fenton Roy Barnett, MD
Françoise Baconnette, MD
Normand Brassard, MD
Evelyn Liber, MD
Ellen Giesbrecht, MD
Eileen K. Hutton, PhD
Janet C. King, MD (California)
Evelyne Rey, MD

Revising Committee:
Gideon Koren, MD, Chair
Dan Farine, MD
Evelyne Rey, MD

The content of this program reflects the expression of a consensus on emerging clinical and scientific advances as of the date issued and may be subject to change. The information should not be construed as dictating an exclusive course of treatment or procedure to be followed.

© 2006-2008

Introduction
• Review increased micronutrient needs in pregnancy
• Highlight health risks of micronutrient deficiency in pregnancy
• Review the rationale for the new SOGC-MOTHERISK Vitamin/Folic Acid Clinical Practice Guideline

Maternal Nutrition and Supplementation

Vitamin A
• Essential for normal reproduction, embryonic development and growth
• 57% of Native Canadian women have low daily vitamin A intake
• Pregnancy RDI: 0.4 - 0.8 mg/day
• Mega dose of vitamin A (> 10,000 IU): association with NTD
• SOGC: beta-carotene as source; not retinol since potentially teratogenic
Vitamin D & Calcium
- Critical for bone development and integrity
- Low consumption of milk products and lack of sunlight exposure are risk factors for lack of vitamin D
- In Canadian climate: lack of vitamin D production
- Native Canadians: 46% have low vitamin D and calcium intake

Iron
- In 1st-2nd trimesters: placenta accumulates iron to release to fetus later
- Between 28-38 wks – fetus grows from 1 to 3.4 kg
- Iron requirement throughout pregnancy: 27 mg/day
- Average iron intake by Canadian women: 12 mg/day
- CDC: start iron supplementation in 1st prenatal visit
- Calcium inhibits iron absorption

Maternal Iron Status
- Evidence that maternal anemia linked to neonatal anemia
- Strong emerging evidence: neonatal hemoglobin linked to child development
- Severe maternal anemia may be a human teratogen
Iodine
- Critical for fetal brain development
- <8 weeks – fetus has no thyroid function
- 8-16 weeks – fetus still dependent on mother’s thyroid hormone
- Endemic low iodine – low IQ in babies
- Maternal hypothyroidism, even subclinical (high TSH) – lower IQ
- 15% of US women of childbearing age have low urine iodine
- Pregnancy RDI: 160 IU/day
- RDI should be increased to 240 IU/day

Omega-3
- Polyunsaturated fatty acids, mostly:
 - Alpha linolenic acid (plants)
 - Eicosapentaenoic acid (fish oil)
- Essential for a healthy diet and normal development

Omega-3 Supplementation
- Potential effects?
 - Prevention of pre-eclampsia – not proven in interventional studies
- Brain function of offspring?
 - Maternal omega-3 supplementation associated with higher cognitive function (IQ)
- Existing evidence too sparse and conflicting to recommend omega-3 maternal supplementation
Folic Acid
Numerous observational studies since 1966 showed an increase in NTDs with low folate:
- **Wald:** RCT of 4 mg folate vs. placebo in mothers with previous NTD: 85% protection
- **Czeizel:** RCT of 0.4 mg folate in women with no previous NTD: potential eradication of 75% of NTD (i.e. folate-dependent)
- **Dublin:** Case control study: 900 nM RBC folate - needed for optimal protection against NTD

Folic Acid Fortification
- **1997-98**
 - USA and Canada fortified flour with folic acid (140 mcg / 100 g)
 - Population levels of folic acid doubled
 - Rates of NTD halved

Folic Acid
- **Wald:**
 Using the Dublin study (protective levels against NTD):
 - 0.4 mg/day: risk reduction of only 36%
 - 5 mg/day: risk reduction of 85%
- **Kapur:**
 - 40% of women of reproductive age in Ontario: RBC levels below 900nM
Prenatal Vitamins Containing Folic Acid and Prevention of Other Malformations

Recently:
• Associated with decreased risk of neural tube defects and other congenital malformations

Meta-analysis:
Prenatal Vitamins Containing Folic Acid and Prevention of Other Malformations

Cardiac: > 20,000 patients
OR: 0.72 (0.62-0.84); protective effect: 28%

Limb: 15,000 patients
OR: 0.23 (0.06-0.79); protective effect: 77%

Cleft palate: > 22,000 patients
OR: 0.68 (0.45-0.96); protective effect: 32%

Meta-analysis:
Prenatal Vitamins Containing Folic Acid and Neonatal Cancers

• Neuroblastoma: 585 patients
 OR: 0.53 (0.42-0.68); protective effect: 47%

• Leukemia: 1995 patients
 OR: 0.60 (0.50-0.74); protective effect: 40%

• Brain cancer: 931 patients
 OR: 0.73 (0.60-0.88); protective effect: 27%
Folic Acid Fortification and Neuroblastoma

- Since 1997-98: an apparent decrease of 50% of neuroblastoma in Ontario
 - Time related to folic acid fortification
 - Based on POGO data (Paediatric Oncology Group)

Recommendations

- Prenatal MV containing FA for all women of childbearing age
- Prenatal MV containing FA as opposed to FA alone
- Diet alone is unlikely to provide adequate RBC folate levels
- Many more women would benefit from 5 mg FA
- 1 dose/day of prenatal MV
- 5 mg FA will not mask B12 deficiency
- Preconception use (2-3 months) of prenatal MV containing folic acid and throughout pregnancy and postpartum (4-6 weeks)
Maternal Nutrition and Supplementation

FA Dose for Women at Low Risks of NTD
- Good diet & good prenatal MV compliance (15-20%)
- Use prenatal MV containing 0.4 - 1.0 mg FA

MNU-10, 12

Maternal Nutrition and Supplementation

FA Dose for Women at Increased Risks of NTD
- Poor lifestyle or poor prenatal MV compliance (80-85%)
- Use prenatal MV containing 5 mg FA – 3 months preconception until 10-12 weeks postconception
- Then switch to a prenatal MV containing 0.4-1.0 mg FA for remaining of pregnancy and postpartum period

MNU-12, 15, 32-33

Maternal Nutrition and Supplementation

Who is at Increased NTD Risk?
- Previous NTD or family history of NTD
- Use of anti-epileptic drugs
- Malabsorption disorders (e.g. IBD)
- Use of folate antagonists (e.g. MTX, sulfas)
- Obese (BMI > 35)
- Smokers
- Ethnicity (e.g. Sikh, Celtic, Northern China)
- Diabetic
- Poor compliance and lifestyle issues

MNU-12, 15, 32-33
Commonly Asked Questions (1)

If 40% of Ontario women did not attain the recommended 900 nM RBC folate level due to poor compliance with their prenatal MV containing 1 mg of FA, why assume they would, by using 5 mg?

- Mean compliance in taking prenatal vitamins: 54-59% (range 0-100%)
- Partial compliance with 5 mg/day will increase levels to the protective range in many more women

Commonly Asked Questions (2)

Would high dose of folic acid mask B₁₂ deficiency?

- Not according to existing studies
- Prenatal vitamins contain B₁₂
- Measurement of B₁₂ levels are not required prior to initiating supplementation

Commonly Asked Questions (3)

FA and Cancer?

Several suggestions of high folate associated with “increased risk of cancer”

- 13 published case control studies
- Overall: a 30-35% reduction in the risk of breast cancer
 - Theoretical increased risk of worsening precancerous progress
 - The “dual effect theory”, may protect against cancer in the general population, but facilitates growth of pre-neoplastic cells
Commonly Asked Questions (4)

FA and Cancer?
- Decrease in breast cancer incidence in USA despite doubling of folate levels
- Ovarian cancer: Prospective cohort study: "...suggests that relatively high dietary folate intake may be associated with reduction of ovarian cancer..."
- Reduction in cancers of: head & neck, pancreas, esophageal, gastric

Commonly Asked Questions (5)

FA and Twinning?
- Association between folate status and risk of twinning
- Systematic review: "possible", but not significant overall evidence

Commonly Asked Questions (6)

What about the long-term use of FA?
- Guideline recommends the use of FA in the perinatal period
- Use of FA is therefore limited to usually recurrent 6- to 12-month time periods
- Other long-term uses (non perinatal context) of FA in the clinical context (alcoholism, anemia, liver and kidney diseases...) are not discussed
Maternal Nutrition and Supplementation

Take Home
- Diet alone is unlikely to provide adequate folate levels
- Use of prenatal MV containing FA as opposed to FA alone
- Use of prenatal MV containing FA for all women of childbearing age
- Planned pregnancy: start prenatal MV 2-3 months before conception

MAT-10, 57, 12, 15

Maternal Nutrition and Supplementation

Take Home
- 5 mg FA will not mask B₁₂ deficiency
- Many more women will need 5 mg FA within a prenatal multivitamin
- Take beta-carotene, not retinol, as source of vitamin A
- Calcium and iron should be taken separately

MAT-10, 57, 12, 15, 39, 3

Maternal Nutrition and Supplementation

Case Study 1
- A 24 y.o. woman with celiac disease comes for first visit due to unplanned pregnancy which she wants to keep
- She is now 8 weeks pregnant (10 weeks gestation)
- She did not supplement with prenatal vitamins

Issues to discuss?
Case Study 1

- She has not supplemented with folic acid, thus not preventing NTD
- Having celiac, she is not eating cereals, hence not benefiting from flour fortification with folate

How should you manage her?

Case Study 1

- AFP in serum: 4SD higher than the mean
- Detailed Level 2 ultrasound: Lumbo-sacral Spina Bifida

Case Study 2

- A 32 y.o. woman is coming to see you planning pregnancy
- Her nutrition is based mostly on meat and cereals. She hardly touches green vegetables and she tries to avoid bread due to overweight
- She is not very keen of medication. In the past, she became pregnant failing her oral contraceptives

How much folic acid would you recommend she take?
Case Study 2
• Consider 5 mg folic acid, as the typical 1 mg in most prenatal vitamins may not be sufficient to prevent NTDs in this non compliant patient